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Abstract

In the present paper the periodic structure of the sea water temperature variations is determined,
the usefulness of process AR(1) is analysed, and the distribution functions of the temperature
range variations in individual summer months are computed using the Monte Carlo method.
The computations were based on the series of daily water temperature measurements at the
stations at Miedzyzdroje, Mielno, and Wiadystawowo in the years 1961 —1970, as well as on
monthly mean values for these stations in the period of 1950—1984. The computations were
carried out having in mind the optimum use of the results for a short period forecast with a 24-
hour lead time, and for the characteristics of the summer season.

1. Introduction

The temperature of sea water is one of the fundamental parameters
related to the physical processes taken as a whole and occurring in an
aqueous environment. Despite its significance, the possibilities of systematic
investigation of a sea water temperatures within long time periods are limited
to the data obtained from coastal measuring stations, due to technical
measuring difficulties. The measurements at such stations give the temperatu-
re characteristics of the coastal surface waters differing in principle from
those of the open sea surface waters.

The sea water temperature variations in the coastal near-shore zone
depends on numerous influencing factors. A small depth of water causes that
the exchange of heat takes place in a thin layer. The type of the coast ie the
inclination of the sea bottom from shoreline toward the open sea is under
those conditions a very important factor. Variations of the radiation, heat

* The investigations were carried out under the research programme CPBP 03.10, co-
ordinated by the Institute of Oceanology of the Polish Academy of Sciences.



balance of the sea surface, turbulent mixing processes which are connected
with local currents, the waves, and the thermal gradient are the next factors.
The influence of the open sea is also important. It is connected with
advection of surface waters tied closely with general field of currents which is
controlled mainly by wind field. Upwellings also belong here being caused
mainly by wind field and" affected by vertical stratification of the sea.

Rapid changes of water temperature are related to the inflow of water
masses with different temperatures. This may concern surface waters or deep
waters uplifted towards the surface under favourable hydrodynamic condi-
tions. Such displacements of water masses are caused by strong winds. A
physical properties mentioned above create the sea water temperature in
near-shore zone a separate subject of studies (Hupfer, Lass, 1975; Lozovatskii
1978; Walin, 1972).

Among the papers regarding the above problems one can find the works
considering a general characteristics of the Polish coast (Dziadziuszko, 1961)
as well as the Gulf of Gdansk (Cyberska, Trzosinska, 1984; Majewski, 1979).
The characteristics of the sea water temperature variations can also be found
in monographs elaborated for individual water basins of the Polish coast.

The computations presented in this paper were carried out on the basis of
daily measurements of water temperature at 12.00 GMT in the years 1961
— 1970 (Hydrographic Annals of the Baltic Sea) and on monthly mean values
from measurements in the period 1950—1984 (Hydrographic Annals of the
Baltic Sea; Maritime Hydrological and Meteorological Report)*. The measu-
rements were performed 0.5m under the surface of the water at coastal
stations at Miedzyzdroje, Mielno, and Wtadystawowo. Geographical posi-
tions of the measuring stations are shown in Figure 1

* The observation at Mielno covered the period 1950—1978.



2. Periodic structure

In the first step the basic statistical characteristics were computed to-
gether with the autocorrelation function for the first time lags. Respective
data are showsa in Table 1 for a sample size of the time series N = 3652.

Table 1. Main statistical characteristics of daily sea water temperatures at Miedzyzdroje, Mielno,
and Wiadystawowal based on the measurements from 1961 to 1970

Station _Ti [%‘] A*(l) *U2) RA3)

“mn -mex
[°’C] [°C]

Miedzyzdroje 91 68 099 099 099 -0.5 230

Mielno 88 63 099 098 097 -0.5 228
Wiadysta-
wWOowo 8.2 62 099 099 098 -0.5 208

Correlation coefficients between individual data series range from 0.97 lo
0.98 which enables the periodic structure to be determined according to a
single measurement series.

Spectral density function was computed for a series from Witadystawowo,
assuming maximum correlation lag M = 182. The computation results are
given in Figure 2. The spectral density function shows no marked periodicity.
The type of the spectrum presented can be computed analytically from the
formula:

00

SAf)=i 1A-""dr. Q)

where:
Sx(f) —spectral density function

Fig. 2. Spectral density function of daily sea water temperatures at Wiadystawowo according to
the measurements in the years 1961 —1970



—variance of a random process,
a —coefficient of the curve shape,
The autocovariance function corresponding to the function given by formula
(1) is determined by:

\K(D)= <Te-at]. (2

The course of the plot implies only that exists a possibility of significant
oscillations in the interval beyond the resolution assumed. The computations
carried out were completed with those of mean monthly water temperatures
in Wiadystawowo in the years 1950—1984. The sample size of the new data
series was N = 420 and maximum correlation lag M = 42 was assumed. The
results given in Figure 3 show very strong one-year period. In the frequency
intervals, which are not included in the above period, the computations yield
only noises of negligible amplitudes.

7'[months]

Fig. 3. Spectral density function of mean monthly sea water temperatures at Wiadystawowo
according to measurements in the years 1950—1984

The compulations carried out when taking into acount the course of the
autocorrelation functions and spectral density functions imply unequivocal
and simple image of the periodic structure of the sea water temperature
variations at the Polish coast. These changes can be interpreted as those
determined by a sine wave with one-year period, with the Gaussian noise
superimposed, the noise amplitudes being considerably smaller than those of
the sine wave.

In this case the periodic structure implies a formula for the distribution of
the probability density function (Bendat, Piersol, 1983). The Gaussian noise
has the well known probability density function. Sine wave has a determini-
stic formula:

x(t) = X sin{2nft+ 0). (©)

If the phase angle 0 is a random variable with a uniform distribution in the
interval = ji, then the sine wave can be treated as a random process. The
probability density function of this process has a formulae:



p(x) = (nj20o8- Xx2) 1; |x] < X,
(3a)
p{x) = 0; x| ~ X,

where as— X y/ 2 is the standard deviation of the sine wave.
The above mentioned function has the ‘U-shaped’ characteristic. If the
process is a sine wave with an addition of Gaussran noise, then the
probability density function is a convolution of the formula (3a) with the
equivalent Gaussian distribution formula. Then the shape of the curve
depends on the ratio of a sine component to noise. A predominant noise
component creates the curve shape similar to the Gaussian bell when as
strong an influence of the sine wave is modelling the ‘U-shaped’ curve.
Intermediate shapes are also possible in practice.

According to above mentioned formulae and former computations, the
distribution of the probability density function of the phenomenon analysed
is determined by the following equation:

n
. 1 f ) doIx—ScosO\Zl (3b)
px) = - = exp - —F ,

<,7s'2n 0 Y 4o, )

where:
0,—standard deviation of the Gaussian noise,
5 —amplitude of one-year period,
6 —phase of one-year period.
The computations of the empirical probability density function showed the
existence of a ‘U-shape’ plot corresponding to high values of coefficient
RO = a”/al characterizing the ratio of the sine to the noise components.
Practical conclusions arising from the analysis carried out show the mean
value for the distribution presented to be the least probable one. The
standard deviation obtained using the mean value should also be interpreted
differently from that computed from the distributions where the mean value
is most probable. It could be anticipated that the determination of the sine
wave components would enable a highly accurate temperature forecast and
that the accuracy could be improved by an addition of the noise component
occurring in the probability intervals of the normal distribution. Such
conclusion is incorrect since the obtained regularity in the sine component,
resulting from one-year distribution of the energy influx, is due to the
averaging after the realization time. As is generally known, the changes in the
air and the surface water temperatures during individual years are conside-
rably diversified, and the harmonic characteristics are variable. Besides, the
effect of solar energy, that of the remaining factors, influencing less signifi-
cantly the water temperature changes within long periods, may be of
essential importance in certain cases of a short-period component.



The values of the autocorrelation function summarized in Table 1 cannot
be applied to the autoregressive scheme since they are too close to unity.
Such a strong regression is due to the small data sampling step with respect
to the variability of the phenomenon as well as to the occurrence of a
predominant sine wave. In the computations the long-term trend mentioned
in papers concerning the Baltic water temperatures (Matthaus, 1982) was not
taken into account due to a relatively short measuring period.

3. Analysis of the usefulness of process AR(1)

As already mentioned, the values of the autocorrelation function given in
Table 1 make the use of the autoregression properties used recently in many
publications (ecj Barnett, Hasselman, 1979, 1984) impossible. However, a
different approach to the employment of autoregression is possible. This
method was considered previously, assuming a stationary ergodic random
process. Let us assume that the temperature course in individual months
constitutes the realization of transient random processes with sample sizes of
Ng= 28 to Ng= 31, the repeatability of the process being n = 10, and the
separations between individual realizations corresponding to 12 months. The
characteristics of individual 12 processes will be averaged over n realizations.
Thus, the course of the sine wave in one-year period will be replaced by the
trend in the transient process or a process without seasonal trend, correspon-
ding to months situated at the inflexions of the annual wave.

If general linear relations between the predictand and the predictors are
expressed according to the formula for many predictors with many time lags
and the condition that the predictors may but need not be autocorrelative,
relations (5) will be obtained:

| m-—1

x{tj + pAt) = X Dikyi{tj-kAt), 5)
i=1*=0

where:
X (tj)—predictand,
At —time step of the prediction,
p—number of time lags for the future, depending on the present and the past
values of the predictor series (/=1,....1),
Dik—weighting coefficients.
The above formula is a numerical solution to a known linear system of
constant parameters with one output and many inputs. For seasonal rela-
tions occurring with one-year period T, the generalization of the physical
system by introducing the Fourier series which replaces constant values Dik
in formula (5) is more appropriate:



Dik() = X Dikgexp(i2natj/T), 6)

a— — 00

The use of transient random processes for individual months and processes
AR(1) simplified the formulae (5) and (6) to the following expression:

Xq(tj) = Daxq(tj-1) + eq(tj), )
where:
xq{tj) —transient random process (q — 1,2,..., 12),

Dg—weighting parameters of AR(1),

—stochastic component N(0,acd).
The results of computations according to the model AR(1) applied to
individual months are presented in Table 2

Table 2. Application of model AR(1) for the prediction of the sea water temperature at 12.00
GMT with a 24-hour lead time for measuring stations in Miedzyzdroje (1), Mielno (2), and
W iadystawowo (3)

x,[°C] D, a«,C°C]

? 1 2 3 1 2 3 1 2 3 1 2 3
1 0.52 0.87 062 084 092 086 094 087 093 028 037 026
2 0.61 0.98 056 08 10 086 087 08 092 037 038 024
3 1.82 2.44 178 179 178 174 093 088 095 051 060 0.27
4 5.83 6.35 524 212 210 184 088 080 094 083 097 042
5 1077 1045 9.04 228 183 154 086 071 088 099 116 0.63
6 1651 1432 1323 199 278 236 080 078 086 110 156 112
7 1805 1764 1691 155 175 178 080 070 078 078 122 097
8 1801 1656 1647 135 258 248 076 075 089 073 142 097
9 1653 1579 1523 163 215 215 086 081 0.89 067 104 0.78
10 1174 1164 1087 163 172 154 090 0.88 091 052 0.67 0.0
1 7.04 7.18 671 196 197 186 092 086 093 049 071 046
12 2.35 2.72 238 174 169 146 092 088 095 050 0.64 035

The data given therein enable the conclusion to be drawn that the
standard deviations amount on average to 41% of the axq value

determined from the measurements. This evidences a considerable effective-
ness of the computations carried out by the use of the formula (7). The
effectiveness of AR(1) can also be compared with the data ax in Table 1 The
computations according to this model can be carried out by determining the
probability of the occurrence of a temperature predicted in a certain interval.
To this end, the values of eq(tj) should be assumed as those from the
intervals of normal distribution, the probability of which is related to the
standard deviations a.

The most effective gesults of the application of transient processes and
AR(1 were obtained in Wiadystawowo and, secondly, in Miedzyzdroje.



Relatively poorer computation results for Mielno are due to the position of
the measuring station located very close to the shore. This resulted in lower
autoregressivity of the measuring series.

The possibilities of practical employment of the results from Table 2 are
varied depending on the magnitude of

For low values of the standard deviation, the forecasting is effective, while
high values yield too broad probability interval for the occurrence of the

temperature forecasted. Nevertheless, the computations carried out determi-
ned the reference level for the introduction of more complex forecasting
methods the application of which might be justified by comparison with the
AR(1) results. In winter months when the minimum temperature of the water
is —0.5°C, the AR(1) assumptions can be used approximately under the
condition:

-0-5°c,
where ay,, is the value of cr,, assumed from N (Octg) intervals.

The problem of the ice forecast in the winter season needs a special
consideration and has particular formulae. The AR (1) parameters estimation
was verified with good results on the independent measurements from years
1958-1960.

4. Computations of temperature range in summer months
by the Monte Carlo method

The temperature range in individual summer months is one of the
essential characteristics of recreative and ecological significance. Respective
computations in this field were carried out for June, July, August, and
September (q = 1,2,3,4) for the three measuring stations considered in the
paper. The temperature range can be expressed by the equation:

Z Na — max xa—min xai,

, ®)
0~ i™ Naq.
The determination of an empirical distribution function based on the obser-
vations from 35 years is not authoritative due to the statistical properties of
equation (8) and a relatively short observation time. This problem was solved
applying the simulation by the Monte Carlo method. In such approach the
problem resolves into the computation of the distribution functions:

Pr\zZNg < Z. ©)

A random variable Z Ny is the range of sequence Nqg of dependent random
variables determined by equation (7), the value of xqo can be found based on
the assumption as that randomly selected from the normal distribution of



sequence \Xd]. If there exists a density probability function of joint distribu-
tion of variables determined as fixqo. xai. =as, x qnvg)> then the distribu-
tion function of range (9) meets the equation known in statistics:

Ngq 0 xqi+ z xXqi+z Ng

Fg(z) = X i f [ J jooet J f (XqO0i xgl) ---> XqNg) O A X g\ A X ogi
i O z Xqi Xqi
z z z Ng
,ft ,f1 e Jf(x qOi X gi> "'>><qu) 0 ]. (AO)

0 Xxqi Xqi j—0

The distribution density function is, according to formula (10), «-dimensional
function of the normal distribution:
i r i Ny 1
f(Xq0>Xqu s> X gNg) — N/2 JjviCXP ~ 2 X _ (xgi-~xqi~-1)2 - (H)
(Zn) 0 L zcr >=i

The computation of the distribution function requires formula (10) to be
integrated with the density function being determined according to (11). The
problem is difficult to solve and involves the computation of multiple
integrals from multi-dimensional normal distribution of dependent random
variables. The simulation by the Monte Carlo method was applied according
to a scheme published on a similar problem (Kupsc, 1969). For each
sequence \Xqi] determined by formula (7), n = 1000 realizations \Xqu) were
performed, and for each of them the following value was determined:

zx = max xgil —min xqil; /=12, ...,n,
0< /< Ng

Mean values xgq were assumed as those from monthly mean values from the
years 1950—1984 and parameters of AR(1) were taken according to Table 2
The distribution function Fq(z) was estimated using the expression:

(12)

P(A) = Fq{2)=~r~], (13)

where A is an event with a value of zgl being lower than z assumed, and m is
the number of the event realizations in n experiments. Since the realizations
of sequences \Xqi\ are mutually independent according to Bernoulli’s law of
large numbers, the following equation holds true for arbitraty e > 0:

lim Pr{ - —F(z) <ei = 1 14)
N~* oo I W i

Therefore, for n = 1000 the determination of the distribution function by the
use of formula (13) is a good estimator of the function represented by
formula (9). With the magnitude of n being assumed, the distribution of
estimator Fq{z), determined as N |£[F(z)], aF), is also known, where the



value of o> can be found from:

iF(z) [1 —F(2)]
F- V n : (15)

Having the above in mind the confidence interval of F(z) is determined
according to:

Pr\F(z)-tadP< F(z) » F(z)+taoP) = 1-a (16)

where tais such a value of a variable with distribution N (0, 1) that P{\T\ < ta)
= 1—a. As a result of computations a number of distribution functions and
characteristics were obtained illustrated for Miedzyzdroje in Figure 4 and for
all measuring stations in Tables 3 and 4.

Table 3. Distribution functions of the temperature range in summer months at Miedzyzdroje,
Mielno, and Wtadystawowo (according to the computations by the Monte Carlo method)

Miedzyzdroje Mielno Wiadystawowo
z months months months
[°C].
VI VIl VI IX VI Vil VI 1X VI VII VIl IX

10 0 0 0 0 0 0 0 0 0 0 0
2 .001 .002 .004 .005 O 0 0 0 0 0 0 0
3 .007 .063 115 .103 0 .008 0 .005 .003 .016 .006 .028
4 .067 304 444 413 002 .069 O .038 .037 124 051 .164
5 269 632 787 .719 012 301 .020 .177 165 .378 .205 .419
6 529 855 937 907 .059 598 .080 415 383 673 420 .669
7 .758 961 984 983 182 .814 239 633 622 .862 .638 .859
8 900 996 .996 997 372 940 440 814 817 .962 .794 934
9 968 1.0 999 998 570 .988 .649 933 904 993 913 972

10  .992 1.0 999 726 996 795 977 958 999 .965 .990

1 .998 1.0 859 1.0 903 990 .987 1.0 983 1.0

12 999 939 963 999 997 .994

13 10 971 .986 1.0 1.0 .997

14 .987 .984 .999

15 .994 .999 1.0

16 997 1.0

17 1.0

The data in Table 3 contain the empirical distribution functions of the
temperature range at measuring stations under consideration. In Table 4 the
means and standard deviations of the temperature range at those stations are
presented. Detailed analysis of those data can be elaborated for the local
studies of sea water temperature variations or for the description of the near-
shore water environment.

It should be emphasized that the simulation by the Monte Carlo method
was accomplished on the basis of mean monthly sea water temperatures



Table 4. Mean values and standard deviations of the sea water temperature range at Miedzy-
zdroje, Mielno, and Wtadystawowo (according to the computations by the Monte Carlo method)

Months
Station VI Vil VIl IX

z oz z [0’] z o z az

[°’Cc] [°C] [°C] [°c] [°Cl [°C] [°C] [°C]
Miedzy-

zdroje 6.5 15 5.2 12 4.7 11 49 12

Mielno 9.3 20 6.3 13 8.9 19 7.0 1.6
Wiady-

stawowo 71 17 6.0 13 7.0 18 6.0 15

measured during long time (as for the determination of this parameter) while
the parameters of process AR(1) were found from 10 Nqg values for a given
month. Therefore, the realization series assumed in this case were also
reliable. Thus, the data assumed replaced 35 empirical values of distribution
functions Fq(z) which were possible to obtain from the measurements as
differences between the extremum values, the reliable determination of which
requires a long observation period.

Fig. 4. Distribution function of the sea water temperature range during summer months for
Miedzyzdroje as computed by the Monte Carlo method
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An obvious problem arises whether the simulation applied was consistent
with complex physical conditions assumed for the process under considera-
tion. In order to verify the validity of the results of the simulation model
assumed, extremum values xqg for each month and for each measuring station
were compared with accessible experimental data. It should be emphasized
that the simulation did not aim at presenting the distribution of the
extremum values, which in this case would require the ‘tail” distribution to be
analysed. The comparative data demonstrate a good choice of the simulation
model. This agreement was verified on the basis of such sensitive indicators
as the extremum values which in this case remained within acceptable limits
as concluded on the basis of observations.

Similarly as with the autoregressive computations, the largest scatter of
the temperature range was found at Mielno, which was due to the location
of the measuring station. However, the temperatures in summer are most
stable at Miedzyzdroje and Witadystawowo. Characteristics shown in Tables
3 and 4 determine the stability of temperatures during summer season. The
physical aspect of this phenomenon is complex since the coastal waters are
warmer as compared to those in the depth and on the surface of the open
sea. Rapid mixing of water masses of different temperatures may bring about
a sudden drop in the coastal water temperature, eg have been known the
cases of decrease in the coastal water temperature in August to 7—8°C.

Statistical presentation of the temperature range problem is justified
having in mind the practical purposes as well as the determination of the
variability range of basic physical parameters of the sea water.

5. Summary

The paper presents the computations of the periodic structure of the
phenomenon investigated on the basis of which the type of the probability
distribution of the daily changes of the sea water temperature and mean
monthly values were determined.

The usefulness of process AR(1) was also determined for the forecast at
12.00 GMT with a 24-hour lead time. The possibility of forecasting given by
a presented method suggests its use in practice and can also be a criterion
for more complex forecasting models. The latter —when employed—should
yield better results than the autoregressive model which is simple and
economic.

The determination of the probabilistic characteristics of the temperature
ranges in individual summer months required more complex computations
which yielded the distribution functions, simple statistical characteristics, and
the formulae for the calculation of the confidence intervals.
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