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Abstract

Third-order Stokes waves on an arbitrary shear flow are described schematically. A compre-
hensive example is given for the linear velocity profile. It is shown that Stokes waves can pro-
pagate on shear flow if linear sinusoidal waves exist on this flow.

1. INTRODUCTION

The wave motion of water is intrinsically nonlinear. As the result of difficulties
in the analytical treatment of nonlinear problems the nonlinear theory of waves is
not well formulated. The state of the art is presented in papers [13] and [17]. Compa-
red with the potential theory, the rotational theory of waves is poorer, as the diffi-
culties are more serious.

However, a growing number of scientists question the assumption on the po-
tential character of wave motion [11]. The rotational theory dates back to 1804,
when Gerstner found an exact solution to nonlinear rotational waves. Dubreil-Ja-
cotin in 1934 proved the existence of two-dimensional periodic and symmetrical
waves of finite amplitude assuming small rotation of water particles in oscillatory
motion. Dubreil-Jacotin’s theory was extended in [6], [8], ...

Nonlinear waves on a free surface of shear flow, with its velocity varying with
depth, are certainly rotational waves, and have therefore attracted the attention of
theoreticians in the past twenty years. The majority of studies on the nonlinear
rotational theory of waves in shear flow are concentrated, however, exclusively on
longwaves(solitary in [1] and [15]andcnoidal in [3], [7], ...). This is due to the fact
that exact solutions for any profile of velocity can be obtained in the case of shallow
water. For short waves only a few publications are known to the Author: third-order
solution in [16], numerical methods for higher orders in [4], and some aspects of
energy, radiation stresses and wave action in [10]. In these three papers [4], [10],
[16] the linear profile of velocity has been analysed.

In this paper, third-order Stokes waves in an arbitrary shear flow are described
schematically. An example is also given for the linear velocity profile. The results
obtained coincide with analogous results of the classical theory of the Stokes waves
and with findings of [16] for the linear velocity profile. It has been shown that third-
-order Stokes waves can propagate on the free surface of shear flow if linear sinu-
soidal waves exist on this flow.
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The convergence problem for the series of stream function, free surface eleva-
tion and phase celerity is still open.

Consecultive higher-order approximations can be found by the procedure pre-
sented in this paper.

2. STOKES WAVES FOR ARBITRARY VELOCITY PROFILES

As in the classical theory of Stokes waves, we shall look for a solution to twoF
-dimensional, periodic and symmetrical waves having constant phase velocity c.
Assume the system of co-ordinates with its origin on the free surface, the x-axis
in the direction of flow and the j'-axis vertically upwards. In the free condition the
velocity components and pressure are:

U=U(y), F=0, P——pgy (2.1)

The wave motion must satisfy the following equations

(f+u)ux+ (f’+uy)v=-pJp (2.2)
(f+u)vx+vvy= -py/p (2.3)
ux+vy=0 (2.4)

and the boundary conditions

(I+«)E"=» for  J=£() (2.5)
fPx+(Py-Po)v=0 for y=i(X) (2.6)
v=0 for y=-H (2.7)

in which
f=U(y)-c (2.8)

u, v, p, p, & # = velocity components, pressure, density, free surface elevation and
constant depth, respectively. The apostrophe denotes ordinary differentiation with
regard to the only variable, while the indices x and y denote partial derivatives.

Formula (2.5) is the common kinematic condition while eq. (2.6) describes the
dynamic condition in the differential form upon the assumption of constant at-
mospheric pressure on the free surface.

Taking into account eq. 2.4 one can express u and v through the stream function
®(x, y), for which

U=<Py, V~ —dXx (2.9)
Putting (2.9) into (2.2), (2.3), (2.5), (2.6) and (2.7) and reducing p yields
{/+DVWADY-® x{/" + ADY)=0 (2.10)

(fF+4>y)t =-58x fOI’ J:£(X)
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(/+ *1)t(/+ ¢,)**,-*JJ'+CD”)]- CD,[O+ CD,CDX,'(/"' (pi)%:O (2]3
fory="(x), ®&A=0 for y--H (2.13)

in which A® = oxx+ o

It is worthwhile to mention that similar to the Dubreil-Jacotin theory one can
obtain the simpler form

A® (X, y)=Q(®)

in which Q(®)= U'(y) if the flow is free. The function denotes the stream function
for the resultant motion due to waves and flow. The boundary conditions become

¢, &'=-0x for y=§&(x)
(PR+ ®1) +298=/2- 9H  for y-{(x)
ox=0 for y=-H

Our analysis, however, will be based on the relationships (2.10)...(2.13), in
which the contribution of the velocity distribution U(y) is more apparent.

Using the Stokes primary method (while the secondary method employs confor-
mai mapping) we will expand the unknown functions ®, { and phase celerity c
in power series in respect of the small parameter ¢

P(X,Y)=ePLU),y) +e2P2(XN) + e3DP3(X, y)+...
€(x) = £0(x) + fifi(x) + €{€2(x) +€3&3(X) + -+ (2-14)
c= Co+ fiCj+ €262+ €303+ ...
Upon consideration of the following free-surface relationship
F(x, y)=F{x,0)+&FWYx,0)+x&2Fyy(x,0)+ 1 -&E3Fyy(x,0)+,.. (2.15)

in which & is given by (2.14) one can formulate the boundary problems for ®aq, {k
and c,,

The introduction of (2.14), (2.15) to (2.10) ... (2.13) gives:
a) For the zeroth order

/oo =0 inwhich/oo=/o0(0)=1t/(0)-co (2.16)

(from (2.16) one can take ¢0=6, with the x-axis on the quiescent horizontal free
surface)

b) For the first order

/04D Lx—u"DP1x=0 for —H<3<0, -00<X<00 (2-17)
Joli+ ®1.*0 for y=0 (2.18)
fo(0'PL,-IpDI"+BD1,=0 for J;=0 (2.19)

PiA=0  for y=-H (2.20)
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in which
fo=U(y)-cO (2.21)

In the search for solutions to (2.10)... (2.13) as symmetrical and periodic waves
we will present (2.17) ... (2.20) as sinusoidal waves, i.e.

A= 9>i00cosM* (2.22)

Accordingly, relationships (2.17)... (2.20) will take the form

fo<P'i-iU"+k*fo]<Pi=0 for -tf<>>< 0 (2.23)
fo&i=kelsinkx for y=0 (2.24)
folU'9i-fo9il=-99i for y=o0 (2-25)
Pi=0 for y=-H (2.26)

Eq. (2.23) and the boundary conditions (2.24)... (2.26) can also be obtained
through linearization of (2.10) ... (2.13), as in the linear theory of waves [19].

Even though simple, eq. (2.23) can be solved explicity for only a very narrow
class of the functions U(y) which satisfy the condition

k*+U"/fo=myl

in which m is an arbitrary number, while f assumes the values 0,2, 4n/(l-2n) for
n=+1 £2, +3, ... In all remaining cases eq. (2.23) can be solved only in appro-
ximation. A certain simple technique basing on the approximation of an arbitrary
velocity profile by a broken line, with an optimum condition, is discussed in [19].

Considering the system (2.23) ... (2.26) as an eigenvalue problem for any U(y),
one encounters some peculiarities.

Proof the existence of the solution (2.22) with the eigen function 97(y) and the
eigenvalue CO satisfying (2.23) ... (2.26) is difficult, but can be found for a special
class of velocity profiles. It is shown in [20] that the solution (2.22) exists on the free
surface of a shear flow, the velocity of which increases with y, but shows down the
closer it is to the free surface, i.e. U'(y)>0, U"(y)<O0. Then a wave with any wave
number k can propagate in the direction of flow, while waves with wave numbers
less than a certain critical value (i.e. sufficiently long waves) can propagate in the
opposite direction. Apart from this, the phase velocity of any wave is real and boun-
ded.

Assume that the velocity profile permits the existence of the solution (2.22) in
the first approximation, which is never equal to zero in the interval —H*{) "~ 0.
In other words, assume that the following functions aie known

i>i="n 9n(y>k) +Bn 012(y, k) (2.27)

in which ¢@Xi, 912 are two independent solutions of the eq. (2.23) satisfying the
condition (2.26) and

co—c0(U, k) (2.28)



Stokes waves 9

From the condition (2.24) one has
ii=(v>i)y=ocoskxI[cO0—U(0)] =alcoskx (2.29)

with zero as the constant of integration, so that the :t-axis lies on the undisturbed,
free surface.
¢) For the second order

It can be checked that in the second approximation eq. (2.10) becomes

10 AD2X~u" ® 2x=DixAD,,-® ,vAD,X (2.30>

The conditions (2.11)... (2.13) will take the form

[082+P2x=-E1D 1"-(V'E1+DL)E'L for j=0 (2.31)

MU'® 2X- / 0D2xy) + 9P2x=/012PiX P>+ U'ELD IXI+ D LxDixy +

~(L"ET+d,,) PIX+/0&1ld1r - v 'PI(V'EL1+ diy) - 9810 Lyy (2.32>
for >=0, ®2x=0 for y=-H (2.33)

Taking into account (2.22) ... (2.25), after a number of simplifications one obtains.
(2.30) ... (2.32) in the form

k
[0 ADP2x-v" P 2x=~{W\ Qy- @Q'"sin 2kx (2.34)-
foZi +$2x="-r(gq>iU'-2fo<p'i)sin2kx for j =0 (2.35)-
~JO
lo(u'®2x-/o ®27) +i®2X- ~ [/oVi'-309>i+(2kFo —Un) <pJsin2kx
Ato

for y—0  (2.36)
in which
Qv—uyy U If0

The appearance of sin2kx on the right hand sides of the relationships.
(2.34) ... (2.36) indicates that the problem (2.33)... (2.36) can be solved in the form

P2=0@2(y)cos2kx,c1l*=0 (2.37)

Eqg. (2.34) takes the form

fo<P2-iU" + (2k)ZoI1V2=R2 (2.38)
in which
1 1 fu"X
*2=j(~a; -0 M --¢ Tl —\ (2.39)

It can be checked that eq. (2.38) has the following general solution satisfying the:
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relationship (2.33)

y y
02=R2i921+B2ip22+922 "V ~2dy-¢ 21 T 2222"24y (2.40)
-H -H
in which
A2 —W\W22-W2\W22 (2.41)

and @21, 2 are two independent solutions of the homogeneous equations related
to eq. (2.38), which is identical with eq. (2.30) if k is replaced by 2k. Thus, one has

®i-<Pu(y> 2fc), 922=Vi2(y,2k) (2.42)

Substituting egs. (2.37), (2.40) in eq. (2.35) and integrating the latter with regard
to X one obtains

£2=a2cos2kx (2.43)
in which
a2=-"~ (oiv'-20'V0)+ p2j//0 for y=0 (2.44)

The condition (2.36) is required to determine the constants A21, B21, AIX and Btl.
d) For the third order

Taking into account egs. (2.22) and (2.37) one obtains the following third-order
relationship from eq. (2.10)

/ OA®3y— " ® 3y— —k R 3Isinkx —3kR33sin3kx (2.45)
where

A31=22 Q'I+WiQi- f[Q2-iv>1Q2+QQi, (2.46)

N33-i(926i"iP2QI~Pl62+i”lQ2>0n-y"-"20,; «=1,2.

The general solution of eq. (2.45) satisfying the condition at the bed can be
presented in the form:

P3—9Bi(y)coskx+ 33(y)cos3kx (2.47)

in which @31, ¢33 must satisfy the following relationships

/o*31-[U"+*Vo0]*31-*31 (2-48)
/o V>33-1U"+m*fol &33= *33 (2.49)
It thus results that
9* =AW8+BS$ ¢0®+ 0g j-"dy-<ptf\]v’\~dy (2.50)
-n -n
in which

fP3i = Vii(y>nk)>P32 = <Pi2(y,nk), W3n= @81y@\- ¢B8{oB\, n=1,3 (2.51)
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Condition (2.11) reads: fory —0
/0E3+0K--{ (U E+ O 'K 2°+)U"E2+& U " "+ 0 2, +&ETD L, - €ENE 1+
+ &1 * D+ E20 1y, + X 2O ix®
As aconsequence of (2.22), (2.27), (2.37), (2.40), (2.43), (2.47) and (2.50) one obtains
N28=k Q¥ 1MU ala2 + 201292 + 2M2—M D)+ "o A>7]sinx +

+Kv>@33+al(v'at+2¢\) +\ai(Mi+2¢'2)+"a\@1]onM x (2-52)
in which

Mj = (U'a2+ ~2 +ifli <p'i+iU"a\)y=0

M2=(iU"a2+ia”"";-c2y=0 (253)
It is easily seen that &3 should be

&€3=a3lcoskx +a33cos3kx (2.54)
in which

A3i-ALi*3i+ Uara2+\ai(2¢2+2M 2—M i)+ "a\ >'/ly=0 (2.55)

a33= —T PB+ "TRL AL+ "1+ ~o (M w2 "2)+ ~ ~'"
L 3 6 24 Jy=0

Note that condition (2.12) now reads
/0(L" 03x—/003xy) + 99 3x—/0(A3— B3)+ (L"Eu1+ O Iy) (A2— B2)+/0 X 20 uxx+
+(Jlo*ix,- v PIX)(/2+ Y2)- gX3+DLy(02- E2) (2.56)

in which
A2 = ®2%+ T OIXT" A3 =0T o2xy+ L0 $Ixy+ izl $Ixyyi
Yi=02,+8101,,, [2=v0'€2++x0"&I-A2, A2=/0XAH v &1+ dDly)Diyy,

AZETOX3y+ (U'EL+ oy X2v+o2 +Y2)olx>, B2=u'X 2+ (U"'Ei+ o dy) Dy,
B3= U'X3+(t/"i, + O[,,) X 2+ (Ja,+ Y2)PIX, D2=/0 X 2x+ (1T~ + @) dIx*,
E2= dIXDiX, (2.57)

Summarizing the relationships obtained for Co one can present the right hand
side of eq. (2.56) in the form

S,sin”~x + S3sin3/x (2.58)
S,=k {fo(U'T,-foT[+n T3-n T2+ W Ti-<p[ Ti+ Y\ c2)+
+ T2iU'T3-fO0T3+4 (T20i—T29i)] + TH(r4—G) + ~"T1+

+yi»n (272 91+ y A ui-y/oT 3 | (2.59)
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S3=Kk{fOW'T6-fOT'+ T'T3-T 2T3+ WiTi- @\ T5] +r5Tn+gT6+
+ T2[U'T3— 0T+ 4 (T2 P1-T 2 *J)] +
+4NIN2TA IX—A @l pitAfoT (2.60j
Ti=(a1™-ifl2/i+iai9>i),=0> Te=C70iPi)y=o,
T2=i(U'ai +/j)j,=0, r3=(4" +aj 9),=0

NM=("5 92 A A2y=0> Tj=(U Ni-lor)j,= o>

(2.61)

AS= (in L+ P fll A +i”2+TA al)y=0

It can be seen that the term with sin &x is simultaneously included in eq. (2.45)
and conditions (2.52), (2.56). Contraryto (2.45)and(2.52)inwhich this term does not
bring about any serious obstacle in the search for solutions, eq. (2.56) embodies
Si sin kx of another, resonant character, often encountered in the nonlinear theory
mechanical oscillations. In our case the solution of eq. (2.56) cannot be solved as
Slis not zero.

The Stokes method (known as Poincare’s method in the theoretical-mechanics)
enables this obstacle to be overcome. The basic idea of this consists in the expansion
in power series of the small parameter ¢, in respect of which other unknown function
are expanded. In fact, C2 can be chosen so that S\ is zero. In this case C2 will read

c2={[/o(V'T,-/o T{+n T3- T2T3+ @I Ti- Y\ T4+ T4T1+gT, +
+ T2(U'T3-/o Ti+4Win-A<p[ T2 +
+N 2012T2 Y +%gt @[-fo T3]I(TT— 0¢\)}y=0 (2.62)

In continuation of the above procedure one can obtain higher order approxima-
tions for the Stokes wave in shear flows. However, the third order should be sufficient,
as the higher approximations have limited application (see 8 5.3.2 in [5]).

The ultimate formulae for ®, & and c in the third order approximation read

® = [fio>j(y) + €3i>3i00] coskx + €202(y) cos 2kx + €3¢0 33(y) cos 3kx
&=(ea, + £3i131) cos kx +€202cos 2kx + €333 cos 3kx
c=c0+i-2c2 (2.63)

in which ¢,, ¥3n,at,a3nc0,c2 are given by (2.27), (2.40), (2.50), (2.29), (2.44),
(2.55), (2.28) and (2.62), respectively.

Denoting eal+¢€3031 by the amplitude a it is possible to present explicit rela-
tionships for the coefficients in eq. (2.63), as functions of a and U(y).

Thus, we have proved that the Stokes third-order waves can propagate on the
free surface of a shear flow — provided the motion consists of sinusoidal waves of
infinitely small amplitude that satisfy the linearized equation and its boundary
conditions (2.23) ... (2.26).
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The proof of the convergence of the series (2.14) is even more difficult than in
the classical theory by Stokes. However, one can hope that this proof can be deri-
ved for a certain class of the functions U(y) if the parameter ¢ is small enough, ¢
being wave amplitude or steepness. It can be shown that the Stokes waves in a shear
flow are unstable with regard to small perturbation as they contain the classical
Stokes waves, the instability of which has been proved by Benjamin in his outstan-
ding work [2] and confirmed in other experimental, as well as theoretical studies
[9], [18], ...

It is worthwhile to mention that the phase velocity in Dubreil-Jacotin’s theory
can by computed by Airy’s formula

(2.64)

with accuracy to the first-order amplitude. In our case, as for the classical Stokes
waves, the phase velocity.

Co is determined with an accuracy of squared amplitude. This discrepancy does
not stem from small vorticity of the resultant motion of water particles in Dubreil-
-Jacotin’s theory, but rather from the method used in its proof (No restrictions
have been put on vorticity i.e. on the velocity gradient U'(y) in our case).

The nonlinearity of the effect of flow on the Stokes waves is visible not only
in the formulae for velocity CO, C2 and amplitude a, a2, a3, a3 but also through the
dependence of wave motion on the direction of wave propagation. This effect cannot
be determined clearly for any velocity profile. This is discussed later by expansion
of the above procedure for the linear velocity profile, which can be treated as a
first approximation for an arbitrary velocity profile.

3. STOKES WAVES B\l FLOW
WITH LINEAR VELOCITY PROFttE

W ithout loss of generality, the problem can be discussed for the following linear
velocity profiles

U=G(y+H) (3.1)

a) Zeroth order
One has ¢0==0, as for any velocity profile.
b) First order
The solution satisfying the solution (2.23) and (2.26) is

t*=Alshk(y +H)coskx (3.2)

Substitution of (3.2) into (2.25) gives

"o:-k(g +7o th&ff, where {0=GH—c0 (3.3)



Thc relation (2.29) can be written

¢l=alcoskx, aj = ----/-\--Ish kH (3.4)
o
¢) Second order
Due to (3.1), (2.39) yields R2—0. The solution (2.40) satisfying (2.38) and (2.13)
becomes

2=A2sh2k(y +H)cos2kx, ct=0 (3.5)
After a number of simplifications the condition (2.36) gives

-kA\ ' G(3g+2G<#o) |,
Y\ p——— ~ \3- m S kH}] (3.6)
85fosh kH? k2v 8

A combination of (3.2), (3.5) and (2.44) yields

ka\ T 3chkH G (  3g+2GV0 Vij
{i-T [2cth,H+jp__ _~,H . » ahM )I*.2fa, (3.7,

d) Third order

Basing on (3.2) and (3.5) we obtain Qt=0 and Q2—0. Thus the right hand side
of eq. (2.45) is zero. The solution that satisfies eq. (2.45) and the condition of the
bed reads

#3=73sh3”0> + H)cos3fcx (3.8)

The ultimate formulae for a3, a33, sLand s3 can result from (2.55), (2.59), (2.60)
and (2.61). Due to the sophisticated form of these formulae it is only C2 which
will be written down as the consequence of (2.62)

[20(8 + ch4ArH) + G<i?o(212+ sh2*H) L 2<2# . ka*G(g + GV,O)O
-— a,<#oj

- 3.9)
16(2g + G"o)sh kH 8 (29 + GVO0)
in which
_M+ch2kH (I+ctfkH) g fchkH (2 +ch2kH) G I
A nsh2hkHsh2kH +g+G¥0] sh*kH k¥ 0J

G 3g.+26%eS g /ch2kH  GchkH\ 2 _GchkHI
M2+ k<€ Ag+GAO\sh2kH kAOshkHj+sh2kH kAOshkH ]

In the summary one obtains:
In the second order

P=ecdl+ e2P2—eAlshk (y + H) coskx + e2A2sh 2k (y + H) cos 2kx

& —ealcoskx +€2a2cos2kx

Denoting €a by a one obtains



- m . -a2y0k . G(3g+G V q)

'shk()H'-H)coskx ----- M—  3—-—="A_m-sh kHjx
shkH 85h kH L k 2(e%
xsh2k(y+H)cos2kx (3.11)
E=acoskx”--—--- cthfcffT24— y— ------- &tth+ M Ytaos2fee  (3.12)
4 kH k60 k<$l )\

In the third-order approximation

Zg(8+ch4kH)+G’\o(I2+sh*kH) akG(g +GVo)0
c=cn-— —r~ ak QA (3.13)
16(29+ G™o)shkH 8(2g + GV<))

in which CO is given by eq. (3.3).
The dispersion relationship, with C2 on the left-hand side, can often be useful.

Taking into account
A 2GH 2ec?\

Vo)

c2=(-& 0+ GH+e2,,,’
one can write ,

. f  2GH aX2[2g(8+ ch4*fl) 4-G~o(12+ sh2 kH)"]

c2
= * » [ N +- 8 (29 + G*#0)sh4 kH
axG(g+GVo
(3.14)
4(2g + G"o)
In the case of G=0 the formulae for & and C2 read
a2k ( : \
$=acoskxH ------ cthkHI 1+ - -J-—) (3.15)
2 V  2sh*kH)
, , I azk\S+ch4kH)I ) g
C°H 1+ «J M "J- ~ - h hkH <316)

They are classical formulae for the Stokes waves [17]. Formulae (3.11), (3.12) and
(3.13) coincide with the resuJts given in [16] and derived in other ways. However,
the former, are much simpler. This particularly is true for the dispersion relation
(3.13). They indicate explicitly the contribution of flow parameters to the stream
function, amplitude and phase velocity. This is analysed 111 [16].

From eq. 3.31 one obtains

Ao —[G thkH + (G 2th2kH + 4gk th A'H)1/2]/2): (3 17)
orc0- U(0)=[- GthkH + (G2thkH +4gk th Atf)1/2]/2£

Basing on egs. (3.4) and (3.17) it can be seen that the waves propagating with the
flow (i.e. Co—t/(0)>0) have a velocity of |CO—U(0)\< |C00|, so that the amplitude
increases. For the opposite direction of wave propagation this is |C0—t/(0)| > |C00|V
hence the amplitude decreases.



This explains the commonly-known fact that the flow intensifies the accompa-
nying (downstream) waves and dampens the opposite (upstream) waves.

A more detailed analysis also indicates that the downstream waves are steeper
and longer than the respective waves in the Stokes theory. For the upstream waves
the picture is the opposite. In addition, it can be shown that the steppness of the
downstream waves increases with the flow gradient. It is interesting that the term
cos 2 kx can be omitted in eq. (3.12) forthefree surface elevation, notably for certain
(although substantial) gradients G. In these cases sinusoidal waves can describe
the free surface oscillations with an accuracy of the third-order of amplitude.

Finally, another peculiarity of the linear velocity profile. Formulae (3.2), (3.5)
and (3.8) show that the three first orders of approximation for the stream function
msatisfy Laplace’s equation, so that the wave motion is potential by the third-order
eapproximation inclusively.

We will prove that for theflow profile (3.1) thewave motion ispotential in general.
In fact, the two-dimensional resultant motion of an ideal, incompressible and
barotropic liquid due to potential external forces, satisfies the Helmholtz equation
tl2]

dQ/dt=0

iin which Q isa vector of vorticity.

Assume that this resultant motion is generated in a shear flow, characterized
by parameters (2.1) in undisturbed condition. Denoting by £2It the vorticity in the
wave motion, one can write

di2,
Q=0"+Q1 hence —dt-+vU“:O (3.18)

in which v is the velocity component in the wave motion.

From eq. (3.18) it follows that the wave motion will be potential only if the velo-
city profile is linear, as in this case one has i2l=const= 0. Accordingly, for all
consecutive approximations one obtains

,=A,,shnk(y + H)cos nkx n=1,2, 3, ..
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